On the Topological Structure of Nonlocal Continuum Field Theories

نویسندگان

چکیده

An alternative to conventional spacetime is proposed and rigorously formulated for nonlocal continuum field theories through the deployment of a fiber bundle-based superspace extension method. We develop, in increasing complexity, concept nonlocality starting from general considerations, going spatial dispersion, ending up with broad formulation that unveils link between topology generic material media. It shown naturally leads Banach (vector) bundle structure serving as an enlarged space (superspace) inside which physical processes, such electromagnetic ones, take place. The added structures, essentially fibered spaces, model topological microdomains physics-based provide fine-grained geometrical picture field–matter interactions metamaterials. utilize standard techniques theory smooth manifolds construct by paying careful attention relevant physics. response tensor then reformulated homomorphism various tools needed proceed local global domains are developed. For concreteness simplicity, our presentations both fundamental examples given illustrate mathematics all emphasize case theory, but formalism developed here quite can be easily extended other types theories. application given, consists utilizing metamaterials order explain why materials often require additional boundary conditions or extra input microscopic relative electromagnetism, where latter not needed. Real-life studies quantitatively illustrating microdomain semiconductors provided. Moreover, series connected appendices, we outline new view emerging electromagnetism domains, which, together main introduced text, may considered unified introduction physics methods

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Poisson Structure Induced (Topological) Field Theories

A class of two dimensional field theories, based on (generically degenerate) Poisson structures and generalizing gravity-Yang-Mills systems, is presented. Locally, the solutions of the classical equations of motion are given. A general scheme for the quantization of the models in a Hamiltonian formulation is found.

متن کامل

the effects of changing roughness on the flow structure in the bends

flow in natural river bends is a complex and turbulent phenomenon which affects the scour and sedimentations and causes an irregular bed topography on the bed. for the reason, the flow hydralics and the parameters which affect the flow to be studied and understand. in this study the effect of bed and wall roughness using the software fluent discussed in a sharp 90-degree flume bend with 40.3cm ...

On the Classification of Topological Field Theories

1 Topological Field Theories and Higher Categories 2 1.1 Classical Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Extending Down: Lower Dimensional Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 Higher Category Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 1.4 Extending Up: Diffeo...

متن کامل

Lectures on topological field theories

These lecture notes cover my talks at the June 2009 “Geometry of Quantum Fields and Strings” summer school at the University of Pennsylvania. I begin by giving a very brief introduction to quantum field theory, quickly moving to nonlinear sigma models and the associated A and B model topological field theories, and the physical realization of derived categories. Later lectures will cover Landau...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Foundations

سال: 2021

ISSN: ['2673-9321']

DOI: https://doi.org/10.3390/foundations2010003